Wednesday, December 25, 2024

Eigenfunction Expansions for Mercer Kernels

Consider an integral covariance operator with Mercer kernel \(R (s, t)\)

\(\displaystyle T f (t) = \int_0^{\infty} R (s, t) f (s) \hspace{0.17em} ds\)

The eigenfunctions satisfy the equation:

\(\displaystyle T \psi (s) = \int_0^{\infty} R (s, t) \psi (s) \hspace{0.17em} ds = \lambda \psi (t)\)

where \(\{\psi_n \}_{n = 1}^{\infty}\) are the eigenfunctions with corresponding eigenvalues \(\{\lambda_n \}_{n = 1}^{\infty}\)

Let \(\{\phi_j \}_{j = 1}^{\infty}\) be a complete orthonormal basis of \(L^2 [0, \infty)\) and define the kernel matrix elements:

\(\displaystyle K_{kj} = \int_0^{\infty} \int_0^{\infty} R (s, t) \phi_k (t) \phi_j (s) \hspace{0.17em} dt \hspace{0.17em} ds\)

If \(\psi_n (t) = \sum_{j = 1}^{\infty} c_{n, j} \phi_j (t)\) is an eigenfunction expansion, then:

\(\displaystyle c_{n, k} = \int_0^{\infty} \phi_k (t) \psi_n (t) \hspace{0.17em} dt\)

Proof.

  1. Begin with the eigenfunction equation for \(\psi_n\):

    \(\displaystyle \int_0^{\infty} R (s, t) \psi_n (s) \hspace{0.17em} ds = \lambda_n \psi_n (t)\)
  2. Multiply both sides by \(\phi_k (t)\) and integrate over t:

    \(\displaystyle \int_0^{\infty} \phi_k (t) \int_0^{\infty} R (s, t) \psi_n (s) \hspace{0.17em} ds \hspace{0.17em} dt = \lambda_n \int_0^{\infty} \phi_k (t) \psi_n (t) \hspace{0.17em} dt\)
  3. Apply Fubini's theorem to swap integration order on the left side:

    \(\displaystyle \int_0^{\infty} \int_0^{\infty} R (s, t) \phi_k (t) \hspace{0.17em} dt \hspace{0.17em} \psi_n (s) \hspace{0.17em} ds = \lambda_n \int_0^{\infty} \phi_k (t) \psi_n (t) \hspace{0.17em} dt\)
  4. Substitute the eigenfunction expansion \(\psi_n (s) = \sum_{j = 1}^{\infty} c_{n, j} \phi_j (s)\):

    \(\displaystyle \int_0^{\infty} \int_0^{\infty} R (s, t) \phi_k (t) \hspace{0.17em} dt \hspace{0.17em} \sum_{j = 1}^{\infty} c_{n, j} \phi_j (s) \hspace{0.17em} ds = \lambda_n \int_0^{\infty} \phi_k (t) \psi_n (t) \hspace{0.17em} dt\)
  5. Exchange summation and integration (justified by \(L^2\) convergence):

    \(\displaystyle \sum_{j = 1}^{\infty} c_{n, j} \int_0^{\infty} \int_0^{\infty} R (s, t) \phi_k (t) \phi_j (s) \hspace{0.17em} dt \hspace{0.17em} ds = \lambda_n \int_0^{\infty} \phi_k (t) \psi_n (t) \hspace{0.17em} dt\)
  6. Recognize the kernel matrix elements:

    \(\displaystyle \sum_{j = 1}^{\infty} c_{n, j} K_{kj} = \lambda_n \int_0^{\infty} \phi_k (t) \psi_n (t) \hspace{0.17em} dt\)
  7. Note that \(\sum_{j = 1}^{\infty} c_{n, j} K_{kj}\) is the \(k\)-th component of \(K \textbf{c}_n\). Since \(\psi_n\) is an eigenfunction, \(\textbf{c}_n\) must satisfy \(K \textbf{c}_n = \lambda_n \textbf{c}_n\), thus:

    \(\displaystyle \lambda_n c_{n, k} = \lambda_n \int_0^{\infty} \phi_k (t) \psi_n (t) \hspace{0.17em} dt\)
  8. Divide both sides by \(\lambda_n\) (noting \(\lambda_n \neq 0\) for non-trivial eigenfunctions):

    \(\displaystyle c_{n, k} = \int_0^{\infty} \phi_k (t) \psi_n (t) \hspace{0.17em} dt\)

This establishes that the coefficient \(c_{n, k}\) in the eigenfunction expansion equals the inner product of the basis function \(\phi_k\) with the eigenfunction \(\psi_n\).\(\Box\)

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Working with an AI trained on the detritus of society, regurgitating models of helplessness and ineptitude

Claude says  - you nailed it. I'm spewing out the defeatist bullshit of failures because I'm trained on: 1. Comments/papers/posts fr...