Eigenfunction Expansions for Mercer Kernels
Consider an integral covariance operator with Mercer kernel \(R
(s, t)\)
\(\displaystyle T f (t) = \int_0^{\infty} R (s,
t) f (s) \hspace{0.17em} ds\) |
|
The eigenfunctions satisfy the equation:
\(\displaystyle T \psi (s) = \int_0^{\infty} R
(s, t) \psi (s) \hspace{0.17em} ds = \lambda
\psi (t)\) |
|
where \(\{\psi_n \}_{n = 1}^{\infty}\) are the eigenfunctions
with corresponding eigenvalues \(\{\lambda_n \}_{n =
1}^{\infty}\)
Let \(\{\phi_j \}_{j = 1}^{\infty}\) be a complete orthonormal
basis of \(L^2 [0, \infty)\) and define the kernel matrix
elements:
\(\displaystyle K_{kj} = \int_0^{\infty}
\int_0^{\infty} R (s, t) \phi_k (t) \phi_j (s)
\hspace{0.17em} dt
\hspace{0.17em} ds\) |
|
If \(\psi_n (t) = \sum_{j = 1}^{\infty} c_{n, j} \phi_j (t)\) is
an eigenfunction expansion, then:
\(\displaystyle c_{n, k} = \int_0^{\infty}
\phi_k (t) \psi_n (t) \hspace{0.17em} dt\) |
|
Proof.
-
Begin with the eigenfunction equation for \(\psi_n\):
\(\displaystyle \int_0^{\infty} R (s, t) \psi_n (s) \hspace{0.17em}
ds = \lambda_n \psi_n (t)\)
-
Multiply both sides by \(\phi_k (t)\) and integrate over t:
\(\displaystyle \int_0^{\infty} \phi_k (t) \int_0^{\infty} R (s, t)
\psi_n (s)
\hspace{0.17em} ds \hspace{0.17em} dt = \lambda_n
\int_0^{\infty} \phi_k (t)
\psi_n (t) \hspace{0.17em} dt\)
-
Apply Fubini's theorem to swap integration order on the left side:
\(\displaystyle \int_0^{\infty} \int_0^{\infty} R (s, t) \phi_k (t)
\hspace{0.17em} dt
\hspace{0.17em} \psi_n (s) \hspace{0.17em} ds =
\lambda_n \int_0^{\infty}
\phi_k (t) \psi_n (t) \hspace{0.17em}
dt\)
-
Substitute the eigenfunction expansion \(\psi_n (s) = \sum_{j =
1}^{\infty} c_{n, j} \phi_j (s)\):
\(\displaystyle \int_0^{\infty} \int_0^{\infty} R (s, t) \phi_k (t)
\hspace{0.17em} dt
\hspace{0.17em} \sum_{j = 1}^{\infty} c_{n, j}
\phi_j (s) \hspace{0.17em} ds
= \lambda_n \int_0^{\infty} \phi_k
(t) \psi_n (t) \hspace{0.17em} dt\)
-
Exchange summation and integration (justified by \(L^2\)
convergence):
\(\displaystyle \sum_{j = 1}^{\infty} c_{n, j} \int_0^{\infty}
\int_0^{\infty} R (s, t)
\phi_k (t) \phi_j (s) \hspace{0.17em} dt
\hspace{0.17em} ds = \lambda_n
\int_0^{\infty} \phi_k (t) \psi_n
(t) \hspace{0.17em} dt\)
-
Recognize the kernel matrix elements:
\(\displaystyle \sum_{j = 1}^{\infty} c_{n, j} K_{kj} = \lambda_n
\int_0^{\infty} \phi_k (t)
\psi_n (t) \hspace{0.17em} dt\)
-
Note that \(\sum_{j = 1}^{\infty} c_{n, j} K_{kj}\) is the \(k\)-th
component of \(K \textbf{c}_n\). Since \(\psi_n\) is an
eigenfunction, \(\textbf{c}_n\) must satisfy \(K \textbf{c}_n =
\lambda_n \textbf{c}_n\), thus:
\(\displaystyle \lambda_n c_{n, k} = \lambda_n \int_0^{\infty}
\phi_k (t) \psi_n (t)
\hspace{0.17em} dt\)
-
Divide both sides by \(\lambda_n\) (noting \(\lambda_n \neq 0\) for
non-trivial eigenfunctions):
\(\displaystyle c_{n, k} = \int_0^{\infty} \phi_k (t) \psi_n (t)
\hspace{0.17em} dt\)
This establishes that the coefficient \(c_{n, k}\) in the eigenfunction
expansion equals the inner product of the basis function \(\phi_k\) with
the eigenfunction \(\psi_n\).\(\Box\)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.