Loading [MathJax]/jax/output/HTML-CSS/jax.js

Wednesday, December 25, 2024

Eigenfunction Expansions for Mercer Kernels

Consider an integral covariance operator with Mercer kernel R(s,t)

Tf(t)=0R(s,t)f(s)ds

The eigenfunctions satisfy the equation:

Tψ(s)=0R(s,t)ψ(s)ds=λψ(t)

where {ψn}n=1 are the eigenfunctions with corresponding eigenvalues {λn}n=1

Let {ϕj}j=1 be a complete orthonormal basis of L2[0,) and define the kernel matrix elements:

Kkj=00R(s,t)ϕk(t)ϕj(s)dtds

If ψn(t)=j=1cn,jϕj(t) is an eigenfunction expansion, then:

cn,k=0ϕk(t)ψn(t)dt

Proof.

  1. Begin with the eigenfunction equation for ψn:

    0R(s,t)ψn(s)ds=λnψn(t)
  2. Multiply both sides by ϕk(t) and integrate over t:

    0ϕk(t)0R(s,t)ψn(s)dsdt=λn0ϕk(t)ψn(t)dt
  3. Apply Fubini's theorem to swap integration order on the left side:

    00R(s,t)ϕk(t)dtψn(s)ds=λn0ϕk(t)ψn(t)dt
  4. Substitute the eigenfunction expansion ψn(s)=j=1cn,jϕj(s):

    00R(s,t)ϕk(t)dtj=1cn,jϕj(s)ds=λn0ϕk(t)ψn(t)dt
  5. Exchange summation and integration (justified by L2 convergence):

    j=1cn,j00R(s,t)ϕk(t)ϕj(s)dtds=λn0ϕk(t)ψn(t)dt
  6. Recognize the kernel matrix elements:

    j=1cn,jKkj=λn0ϕk(t)ψn(t)dt
  7. Note that j=1cn,jKkj is the k-th component of Kcn. Since ψn is an eigenfunction, cn must satisfy Kcn=λncn, thus:

    λncn,k=λn0ϕk(t)ψn(t)dt
  8. Divide both sides by λn (noting λn0 for non-trivial eigenfunctions):

    cn,k=0ϕk(t)ψn(t)dt

This establishes that the coefficient cn,k in the eigenfunction expansion equals the inner product of the basis function ϕk with the eigenfunction ψn.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

The Devil’s Dice: How Chance and Determinism Seduce the Universe

The Devil’s Dice: How Chance and Determinism Seduce the Universe The Devil’s Dice: How Chance and Determini...