Monday, September 9, 2024

A Recipe For Finding The Eigenfunctions of Stationary Gaussian Process Integral Covariance Operators

Theorem. The Eigenfunctions of Integral Covariance Operators Corresponding To Stationary Gaussian Processes Are Given By The Orthogonal Complement of the Null Space Of the Inner Product Operator where the Null Space Is Identified To Be The Fourier Transforms of the Orthogonal Polynomials Whose Orthogonality Measure Is The Spectral Density Of The Gaussian Process To Which It Corresponds

Proof. Let $C(x)$ be the covariance function of a stationary Gaussian process on $\mathbb{R}$. The covariance operator $T$ is defined by:

$$(Tf)(x) = \int_{-\infty}^\infty C(x-y) f(y) \, dy.$$

The spectral density $S(\omega)$ of the process is related to $C(x)$ by Bochner's theorem:

$$C(x) = \int_{-\infty}^{\infty} e^{i\omega x} S(\omega) \, d\omega.$$

We consider polynomials $\{p_n(\omega)\}$ orthogonal with respect to $S(\omega)$ over its domain:

$$\int_{-\infty}^{\infty} p_n(\omega) p_m(\omega) S(\omega) \, d\omega = \delta_{nm}.$$

The inverse Fourier transforms of these polynomials are:

$$r_n(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} p_n(\omega) e^{i\omega x} \, d\omega.$$
 

Null Space Property


We prove that $r_n(x)$ form the null space of the kernel inner product:

$$\int_0^\infty C(x)r_n(x)dx = 0$$

\begin{align*}
\int_0^\infty C(x)r_n(x)dx &= \int_0^\infty C(x) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} p_n(\omega) e^{i\omega x} \, d\omega \, dx \\
&= \int_0^\infty \int_{-\infty}^{\infty} e^{i\omega' x} S(\omega') \, d\omega' \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} p_n(\omega) e^{i\omega x} \, d\omega \, dx \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(\omega') p_n(\omega) \int_0^\infty e^{i(\omega'+\omega) x} \, dx \, d\omega \, d\omega' \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S(\omega') p_n(\omega) \pi \delta(\omega'+\omega) \, d\omega \, d\omega' \\
&= \frac{\pi}{\sqrt{2\pi}} \int_{-\infty}^{\infty} S(\omega') p_n(-\omega') \, d\omega' = 0
\end{align*}

Eigenfunctions from Orthogonalized Null Space


By orthogonalizing the null space $\{r_n(x)\}$, we obtain the eigenfunctions $\{\psi_n(x)\}$ of the covariance operator $T$. The orthogonalization process gives:

$$\psi_n(x) = \sum_{k=0}^n a_{nk} r_k(x)$$

where the coefficients $a_{nk}$ are given by:

$$a_{nk} = \begin{cases}
1 & \text{if } k = n \\
-\sum_{j=k}^{n-1} a_{nj} \langle r_n, \psi_j \rangle & \text{if } k < n \\
0 & \text{if } k > n
\end{cases}$$

We prove that these are indeed eigenfunctions:

Let $\psi_n(x) = \sum_k a_{nk} r_k(x)$. Then:

\begin{align*}
\int_{-\infty}^\infty C(x-y) \psi_n(y) \, dy &= \int_{-\infty}^\infty C(x-y) \sum_k a_{nk} r_k(y) \, dy \\
&= \sum_k a_{nk} \int_{-\infty}^\infty C(x-y) r_k(y) \, dy \\
&= \sum_k a_{nk} \int_{-\infty}^x C(x-y) r_k(y) \, dy \\
&= \sum_k a_{nk} \left[r_k(x) \int_0^\infty C(z) \psi_n(z) \, dz - \int_0^\infty C(z) \int_0^z r_k'(x-t) \, dt \, dz\right] \\
&= \lambda_n \sum_k a_{nk} r_k(x) = \lambda_n \psi_n(x)
\end{align*}

where the eigenvalue $\lambda_n$ is given by:

$$\lambda_n = \int_0^\infty C(z) \psi_n(z)  dz$$


Thus, it is shown that the orthogonalized null space functions are eigenfunctions of the covariance operator, providing a direct method to construct eigenfunctions for stationary operators. The eigenvalues are determined by the inner product of the covariance function with the corresponding eigenfunction. QED.

Note: this process does not depend upon the integral operator being trace class,  the kernel function itself being square integrable, or being restricted to a compact domain.

--Stephen Crowley




No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Toxicity in the trading community

 I see, thank you for clarifying further. You're painting a vivid picture of a toxic environment in the trading world. It's clear th...